Thermal Remote Sensing for Global Volcano Monitoring

Diego Coppola

Dipartimento di Scienze della Terra – Università di Torino

PART I: Basics of volcano thermal remote sensing: principles, sensors and hotspot detection systems

PART II: Operational / applications: how to interpret the MIROVA data for volcano monitoring

Volcanic phenomena are always accompanied by the transfer of heat from the earth crust into the atmosphere.

Part of this heat can be detected by space thus providing a robust way to monitor volcanoes.

- detect signs of unrest at quiescent volcanoes
- detect (start/end) of eruption
- Follow the evolution of an eruption
- estimate effusion rate and erupted volumes
 - Seismicity
 - Degassing
 - Deformation

Fundamental Laws

Planck Law $L(T, \lambda) = \frac{2hc^2}{\lambda^5(exp(hc/k\lambda T) - 1)}$

It describes the spectral radiance as a function of the temperature of the object and the wavelength

Wien Law

$$\lambda_{max} = \frac{A}{T}$$

It allows you to calculate the peak wavelength given the temperature of the object.

Stephan-Boltzmann Law

$$M = \sigma T^2$$

It allows you to calculate the emittance of a black body (W / m2), given its temperature. Represents the integral of the Planck curve.

Planck curves for typical volcanic temperatures

Different wavelengths «sense» different portion of a lava field

Different wavelengths «sense» portion of a lava field at different temperatures

Different wavelengths «sense» portions of a lava field with different ages

 $f_i = \frac{A_i}{A_{pix}}$

An example: MIROVA

Is composed of the weighted sum of one or more radiant objects (hotspots) that do not entirely occupy the area of a pixel, but only a fraction of it.

Excess Radiance

 $\Delta L(\lambda) = L(\lambda, T_{int}) - L(\lambda, T_{bk})$

Is calculated as the difference between the radiance of the hotspot-contaminated pixel, and the background pixel:.

The true heat flux radiated by the hotspot is also composed of the weighted sum of one or more sub-pixel radiant objects.

Excess MIR Radiance

$$\Delta L(MIR) = L(MIR, T_{int}) - L(MIR, T_{bk})$$

Is calculated as the difference between the MIR radiance of the hotspot-contaminated pixel, and the background pixel:.

Volcanic Radiative Power

The MIR-Method: Originally devlopped to calculate the *fire radiative power* (Wooster et al, 2003), this method allow to calculate the **radiant power of the hot (>200°C) and young (< 24 hours)** lava surfaces directly from the *"excess MIR radiance"*.

KEY POINT: the MIR radiance of an hot object at T>200°C is almost proportional to T^4 , as the Stephan-Boltzmann law.

Most of the hotspot detection algorithms exploit the different radiance recorded in two or more distinct bands.

One of the most used indexes in this sense is the *Normalized Thermal Index* (Wright et al., 2002) which uses the MIR and TIR bands:

 $NTI = \frac{L_{MIR} - L_{TIR}}{L_{MIR} + L_{TIR}}$

Setting a threshold is crucial for detecting a hotspot.

The threshold can be:

FIXED: a fixed value set for local or global applicationCONTEXTUAL: the index exceed the value of neighbour pixelTEMPORAL: the index exceed the normal temporal variabilityHYBRID: a mix of the above

Most of the hotspot detection algorithms exploit the different radiance recorded in two or more distinct bands.

One of the most used indexes in this sense is the *Normalized Thermal Index* (Wright et al, 2002) which uses the MIR and TIR bands:

 $NTI = \frac{L_{MIR} - L_{TIR}}{L_{MIR} + L_{TIR}}$

Setting a threshold is crucial for detecting a hotspot.

The threshold can be:

FIXED: a fixed value set for local or global application
CONTEXTUAL: the index exceed the value of neighbour pixel
TEMPORAL: the index exceed the normal temporal variability
HYBRID: a mix of the above

From Coppola et al., 2016

Most of the hotspot detection algorithms exploit the different radiance recorded in two or more distinct bands.

One of the most used indexes in this sense is the *Normalized Thermal Index* (Wright et al, 2002) which uses the MIR and TIR bands:

 $NTI = \frac{L_{MIR} - L_{TIR}}{L_{MIR} + L_{TIR}}$

Setting a threshold is crucial for detecting a hotspot.

The threshold can be:

FIXED: a fixed value set for local or global application
CONTEXTUAL: the index exceed the value of neighbour pixel
TEMPORAL: the index exceed the normal variability in time
HYBRID: a mix of the above

From Marchese et al., 2010

Most of the hotspot detection algorithms exploit the different radiance recorded in two or more distinct bands.

One of the most used indexes in this sense is the *Normalized Thermal Index* (Wright et al, 2002) which uses the MIR and TIR bands:

 $NTI = \frac{L_{MIR} - L_{TIR}}{L_{MIR} + L_{TIR}}$

Setting a threshold is crucial for detecting a hotspot.

The threshold can be:

FIXED: a fixed value set for local or global application
CONTEXTUAL: the index exceed the value of neighbour pixel
TEMPORAL: the index exceed the normal temporal variability
HYBRID: a mix of the above

From Harris et al., 2016

An example: MIROVA

Common Metrics used quantify volcanic thermal anomalies

Depending on the sensor (wavelenght, resolutions) and algorithm, there several metric used:

Parameter	Unit	Proxy	Dependency	quantitative
1. Number of pixels (Npix)	counts	Size/intensity	Pixel size, wavelength	NO*
2. Excess Temperature (∆T)	К	Size/intensity	Pixel size, wavelength, saturation	NO*
 3. Excess Radiance (△L) Area Temperature TADR (only effusive) 	W m ⁻² sr ⁻¹ μm ⁻¹ m ² K m ³ s ⁻¹	Size /Intensity Area Temperature Mass flux	Pixel size, wavelength, saturation	YES*
4. Volcanic Radiative Power (VRP) TADR (only effusive) 	Watt m ³ s ⁻¹	Radiant Flux Mass flux	method	YES*

An example: MIROVA

Common Sensors used for thermal monitoring of volcanoes

Different sensors or resolutions → different type of data usage and application

Modified from Ganci et al., 2016

	Developper	System	Sensor	Bands	Spat. Res.	Temp. Res.	Coverage	Website	Images	metric	Timeseries	Reference
	IMV	ΗΟΤΛΟΙ Ο	SEVIRI	MIR TIR	~ 5 km	15-30 min	Specific Targets Europe, Africa	http://hotvolc.opgc.fr/ww	x	AL	x	Gouhier et al 2016
			COLE		α E km	15 30 min	North, Central, South America; Pacific	http://goes.higp.hawaii.ed	Ű			Patrick at al. 2016
S S	пібр	-		IVIIN, IIN	J KIII	13-30 11111		<u>u/</u>	×			Patrick et al., 2010
/ RI	USGS	VOLCVIEW	AVHRR/MODIS/ VIIRS/GOES	MIR,TIR	~1km/~5 km	6-12 h/15-30 min	Specific Targets Alaska; Aleutines; Kamchatka;Pacific Ocean	https://volcview.wr.usgs.g ov/	x			Shneider et al., 2014
× 0	INGV	HOTSAT	MODIS/SEVIRI	MIR,TIR	~1km/~5 km	6-12 h/15-30 min	Specific Targets Europe, Africa	Internal use		ΔL		Ganci et al., 2011
	INGV	AVHotRR	AVHRR/SEVIRI	MIR,TIR	~1km/~5 km	6-12 h/15-30 min	Specific Targets	Internal use				Lombardo et al., 2016
	INGV	MS2RWS	SEVIRI	MIR,TIR	~ 5 km	5 min	Specific Targets Europe, Africa	<u>http://160.97.1.28/rapidr</u> <u>esp/</u>	x	ΔL	x	Corradini, Buongiorno
	ΙΜΑΑ	RSTvolc	AVHRR/MODIS	MIR, TIR	~ 1 km	6-12 h	Specific Targets	Intarnal use				Pergola et al., 2016
	AVO	_	AVHRR/MODIS/VIIRS	MIR,TIR	350 m/~ 1 km	6-12 h	Specific Targets Alaska; Aleutines; Kamchatka	http://avo.images.alaska.e du/tools/ftp_browser.php	x			Dean et al., 2002
S	HIGP	MODVOLC	MODIS	MIR, TIR	~ 1 km	6-12 h	Global	<u>http://modis.higp.hawaii.e</u> <u>du/</u>		VRP	x	Wright et al., 2004
	UNITO	MIROVA	MODIS /SENTINEL2	MIR, TIR	~ 1 km	6-12 h	Specific Targets - Global scale	<u>http://www.mirovaweb.it</u> L	x	VRP	x	Coppola et al., 2016
101	KVERT	VOLSATVIEW	AVHRR/MODIS/VIIRS	MIR, TIR	~ 1 km	1-2 h	Specific Targets - Kamchatcka&Kuriles	http://volcanoes.smislab.r u/static/index.sht	x			Gordeev et al., 2016
~	UNI TOKYO	REALVOLC	MODIS	MIR, TIR	~ 1 km	6-12 h	Specific Targets Asia;Oceania; North, Central, South America	http://vrsserv2.eri.u- tokyo.ac.jp/	x	∆T	x	Kaneko et al., 2010
	NOAA	NIGHTFIRE	VIIRS	SWIR/MIR	~ 1 km	6-12 h	Global	https://ngdc.noaa.gov/eog /viirs/download viirs fire. html		VRP		Elvidge et al., 2013
	NASA	FIRMS	VIIRS/MODIS	MIR, TIR	350 m/~ 1 km	6-12 h	Global	https://firms.modaps.eosd is.nasa.gov/		VRP		Davies et al., 2009
						variable, typically >						
	JPL	AVA	ASTER	TIR	~ 90 m	16 days	Specific Targets - Global	https://ava.jpl.nasa.gov/	х			Linick et al., 2014
ES	GSJ	ASTER Image Database	ASTER	TIR	~ 90 m	variable, typically > 16 days	Specific Targets - Global	https://gbank.gsj.jp/vsidb/ image/index-E.html	x			Urai (2011)
Ц Ц	Cornell University	AVTOV	ASTER	TIR	~ 90 m	variable, typically > 16 days	Specific Targets - Latin America	https://www.wovodat.org L		ΔT	x	Reath et al., 2019
D H	GFZ	MOUNTS	SENTINEL 1-2-5P	SWIR	~ 20 m	5 days	Specific Targets - Global	http://mounts- project.com/home	x	Npix	x	Valade et al., 2019
	UCN	VOLCANOMS	LANDSAT/SENTINEL2	SWIR	~20/30 m	5- 30 days	Specific Target	http://volcanoms.ckelar.or g/	x	ΔL	x	Layana et al., 2020
	IMAA	NHI TOOL	LANDSAT/SENTINEL2	SWIR	~20/30 m	5- 30 days	Global	https://nicogenzano.users. earthengine.app/view/nhi- tool	x	ΔL	x	Genzano et al., 2020

DIPARTIMENTO DI SCIENZE DELLA TERRA DI TORINO

a collaborative project between Earth Science Departments of Turin and Florence (Italy), on behalf of the Italian Civil Protection Department, for automatic thermal monitoring of **Stromboli** and **Etna** from space. Now extended for monitoring more than 200 **volcanoes**

TEAM

D.Coppola, M Laiolo, C. Cigolini, F. Massimetti (PhD) University of Turin

COLLABORATORS:

D. Delle Donne, M Ripepe INGV, University of Florence

Other collaborators provided great improvement to previous and current version of the system: Hidran Harias, Walter Vanzetti, Davide Piscopo, Stefano Zuliani, Alberto Franchi

Middle Infrared Observations of Volcanic Activity

GOALS

APPLICATION

To detects, localize and **quantify thermal anomalies** sourced by volcanic activity

RESEARCH

to improve our **understanding of volcano dynamics** for hazard evaluation and forecasting

To provide near real time thermal observations of volcanic activity in **support of volcano monitoring**

to build and update a global **database** of volcanic thermal emissions

UNIQUE SYSTEM

OVERVIEW OF MIROVA

TYPE OF INFORMATION

BEST PRACTICES

APPLICATION CASES

MODIS

TWO MODIS CARRIED ON TERRA AND AQUA SPACECRAFTS (NASA)

ON ORBIT SINCE 2000 (TERRA) AND 2002 (AQUA)

1 km RESOLUTION IN THE INFRARED BANDS

~ 4 IMAGES PER DAY (2 NIGHT, 2 DAY)

LOW GAIN MIR CHANNEL (~3.96 μm)

Data SIO, NOAA, U.S. Navy, NGA, GEBCO mage Landsat / Copernicus © 2018 Google US Dept of State Geographer

INPUT: MODIS NRT DATA

CROP & RESAMPLING: 50 X 50 KM

HOTSPOT DETECTION

VRP CALCULATION

OUTPUT: VRP Timeseries & Images @ target volcanoes

https://lance-modis.eosdis.nasa.gov/

Mance-modis and viirs-land near real-time data

Earth Observation Data 🏽 🔹 LANCE: NASA Near Real-Time Data and Imagery 🖉 💿 LANCE-MODIS Collections 6 & 6.1, VIIRS-LAND Collection 1 & 2

Data available in 1-4 hours

Product Name	Download (register for access) 🗗	Volume GB/day	PGE	Latency (h:mm) min / avg / max	DOI
xtrapolated Orbital Data 🗷	AM1EPHNE	0.000012	97	- / - / -	AM1EPHNE.NRT.061
0 PDS Data, 5-Min Swath 🗷	MOD00F	68.91	95	0.29 / 0.76 / 1.36	MOD00F.NRT.061
1A Raw Radiances, 5-Min Swath 🗷	MOD01	107.35	01	0.45 / 0.93 / 1.52	MOD01.NRT.061 🗷
Geolocation, 5-Min Swath 1km 🗷	MOD03	8.28	01	0.45 / 0.93 / 1.52	MOD03.NRT.061 🗷
.1B Calibrated Radiances, 5-Min Swath 1km 🗷 L1B Radiances 🕥	MOD021KM	31.09	02	0.57 / 1.07 / 1.64	MOD021KM.NRT.061 🗷
1B Calibrated Radiances, 5-Min Swath 500m 🗷 L1B Radiances 🔎	MOD02HKM	20.54	02	0.68 / 1.11 / 1.56	MOD02HKM.NRT.061 🗷
1B Calibrated Radiances, 5-Min Swath 250m 🗷 L1B Radiances 🔎	MOD02QKM	21.95	02	0.68 / 1.11 / 1.56	MOD02QKM.NRT.061 🗗

VRP Timeseries & Images

@ target volcanoes

TYPE OF INFORMATION

BEST PRACTICES

APPLICATION CASES

Fully automated: provides data and images within 1 to 4 hours from the satellite overpass (from LANCE)
Thermal output (in MW) subdivided into 5 distinct levels
From < 1 MW to > 10 GW

MIROVA

TYPE OF INFORMATION

BEST PRACTICES

APPLICATION CASES

MIROVA

26/11/18

Dec18

TYPE OF INFORMATION

BEST PRACTICES

APPLICATION CASES

MIROV/A

TYPE OF INFORMATION

BEST PRACTICES

APPLICATION CASES

Quick recognition of the location of a thermal anomaly or track lava flow advance

.kmz file soon available for download

OVERVIEW OF MIROVA

TYPE OF INFORMATION

BEST PRACTICES

APPLICATION CASES

OVERVIEW OF MIROVA

TYPE OF INFORMATION

BEST PRACTICES

APPLICATION CASES

- 1. Presence or absence of thermal anomalies (timing of an eruption):
- Intensity/Trend of the thermal anomaly 2.
- 3. *Location/dimension of the hotspot and its distance* from the volcanic summit

i.e. Etna eruption on 19 Feb 2021 11:25 UTC

- 1. Presence or absence of thermal anomalies (timing of an eruption):
- 2. Intensity/Trend of the thermal anomaly
- 3. Location/dimension of the hotspot and its distance from the volcanic summit

Volcanic Radiative Power Scale							
NONE	1 MW	10 MW	100 MW	1 GW	10 GW		

- 1. Presence or absence of thermal anomalies (timing of an eruption):
- 2. Intensity/Trend of the thermal anomaly
- 3. Location/dimension of the hotspot and its distance from the volcanic summit

- 1. Presence or absence of thermal anomalies (timing of an eruption):
- 2. Intensity/Trend of the thermal anomaly
- **3.** Location/dimension of the hotspot and its distance from the volcanic summit

Best Practice 1: Look at the trends (at different timescales) rather than single data points

In many cases a single data does not give us particular information about the thermal state of a volcano because some volcanic processes occur on timescales of days, months or years.

- Take into account the evolution of the data on different time scales (daily, weekly, monthly or yearly).
- Wait further images/data to confirm/validate an eruptive trend/pattern

BEST PRACTICES

15/11/2018

16/11/2018

APPLICATION CASES

Best Practice 2: Look at the images, not only at the associated numbers (VRP)

Each single image should be evaluated in order to exclude the effects of:

- > Clouds
- Volcanic Plumes
- Viewing Geometry
- > Fires/Antropic

False alerts

17/11/2018

18/11/2018

19/11/2018

20/11/2018

2.00E+09	quality	sat azi	sat zen	VRP (Wat	Date
	1	-97.4118	43.04907	7.20E+07	15/11/2018 19:50
1 50F+09	1	-80.4545	37.63543	3.17E+07	16/11/2018 08:05
	1	81.76579	7.33894	2.51E+07	17/11/2018 04:20
/att	0	96.09572	60.62727	1.90E+07	17/11/2018 07:10
≥ 1.00E+09	1	98.59837	15.23142	2.29E+08	17/11/2018 16:35
VRF	1	-98.1587	20.99652	3.09E+08	17/11/2018 19:35
5.00E+08	0	-96.3102	62.76371	7.09E+08	18/11/2018 05:05
	1	-81.5903	13.46179	5.62E+08	18/11/2018 07:50
	0	-79.0103	59.7177	2.92E+08	18/11/2018 17:15
0.00E+00	1	80.67129	33.32163	1.73E+09	19/11/2018 04:10
15/.	1	97.42218	39.09105	1.52E+09	19/11/2018 16:20

Best Practice 3:

Supervise the data to detect true changes in heat flux due to volcanic activity

Best Practice 3:

Supervise the data to detect true changes in heat flux due to volcanic activity

Best Practice 4:

Compare VRP data with other parameters (seismicity/degassing/deformation)

Best Practice 5:

Integrate the VRP to obtain the total energy radiated (VRE). Some pattern may become more evident

Best Practice 6:

Holuhraun 2014-2015 eruption

Best Practice 7:

A convenient way to calculate VRE without data supervision

In many case is not possible/convenient to supervise the whole dataset (tens of thousands of images).

It is therefore practical to calculate the VRE as:

 Calculate the maximum daily VRP and integrate it over time windows of 24 hours;

this method is more effective during a continuous effusive activity in which we have practically continuous thermal anomalies

 Calculate the mean weekly VRP and integrate it over time windows of 7 days;

this method is most effective during periods of low activity in which several days can pass between one anomaly and the next

During effusive eruption the VRE is correlated to erupted lava volume. For a single volcano the correlation depends mainly on local factors such as topography and cooling rate

(file name

BEST PRACTICES

APPLICATION CASES

INTEGRATED SATELLITE-DATA-DRIVE RESPONSE TO EFFUSIVE CRISIS AT PITON DE LA FOURNAISE

LAVA FLOW FIELD REPORTING FORM

save format: www.mmdd-Volcano.name-ANR-LAVA-REPORT-#

(ine name save format. yvyy)			\neg KEI OKI ##j	
Target	Piton de la Fournaise			
Eruption Start Date and Time (local)		2018-04-27-T-23:50 (local time)		
Report Date and Time (UTC)		2018-04-28-T-09	:00 (GMT)	
Up-dated by		HARRIS Andrew		
Field 1: TIME	-AVERAGED DISCH	HARGE RATE		
Sensor		MODIS		
Processing System		MIROVA		
Last update		2018-05-24T06:1	10:00	
Up-dated by	COPPOLA Diego			
Image Date	Image Time	TADR-min	TADR-max	
15-05-2018	06:15:00	1,32	2,71	
15-05-2018	21:30:00	0,88	1,81	
15-05-2018	21:30:00	0,88	1,81	
16-05-2018	06:55:00	0,53	1,09	
16-05-2018	19:05:00	0,82	1,69	
16-05-2018	19:05:00	0,82	1,69	
17-05-2018	21:20:00	0,51	1,05	
19-05-2018	21:05:00	0,35	0,73	
22-05-2018	21:35:00	0,02	0,04	
24-05-2018	06:10:00	0,02	0,03	

Comments:

OPGC

The MODIS image acquired today at 06:10 UTC, indicates very low thermal activity over the lava field (~5 MW) corresponding to a very low TADR (0.015 to 0.03 m3/s). However, this low thermal flux could be also related to the cooling of the lava field emplaced in the previous days.

BEST PRACTICES

OPGC

BePhysicae de Gobe de Ciermone Ferrance

APPLICATION CASES

University of Pittsburgh

INTEGRATED SATELLITE-DATA-DRIVE RESPONSE TO EFFUSIVE CRISIS AT PITON DE LA FOURNAISE

from Harris et al. 2019

NEAR REAL TIME PROTOCOL IN ACTION: ERUPTION OF 10 FEBRUARY 2020

This map was map delivered to the Observatory **about 4 hours after** the start of the eruption

NEAR REAL TIME MONITORING OF EFFUSIVE ERUPTIONS AT STROMBOLI VOLCANO

Presidenza del Consiglio dei Ministri

Dipartimento della Protezione Civile

Laboratorio Geofisica Sperimentale

COMUNICATO N.15 ATTIVITA' VULCANO STROMBOLI DELLE 21:30

(ORA LOCALE) DEL 17/07/2019

📀 Wednesday, 17 July 2019 🖋 Massimo Della Schiava 🛸 Stromboli, Volcano monitoring, infrasound, Projects 💿 1914 Hits

I dati termici da satellite e da telecamera registrati nelle ultime 12 ore indicano un aumento dell'attività effusiva dal Cratere di SW. Le immagini MODIS acquisite nelle ultime 12h, in favorevoli condizioni meteorologiche e di geometria satellitare, mostrano anomalie termiche elevate di 466 MW (09:40 UTC) e 744 MW (01:50 UTC).

Tale incremento dell'attività termica corrisponde ad un incremento dell'attività effusiva, con tassi effusivi (TADR) stimati in circa 2 mc/s (+/- 0.6 m3/s).

Sulla base dei dati rilevati dal MODIS, il volume totale di materiale emesso è pari a circa 1.3 Mmc (+/- 0,4 Mmc) (Figura 1).

Figura 1. Andamento del tasso effusivo medio (Time Averaged Discharge Rate) e volumi di lava eruttati a partire dal 4 Luglio 2019 (stime preliminari ricavate dai dati MODIS-MIROVA) L'incremento della radianza termica misurata dal MODIS è confermata dall'immagine SENTINEL acquisita alle 10:00 UTC di oggi che mostra un chiaro aumento dell'area della colata (Figura 2).

Dalle immagini è possibile stimare una lunghezza massima del flusso di circa 600 m e una larghezza massima di 80 m. Il fronte lavico si assesta ad una quota di circa 300 m.

Figura 2. Immagine SENTINEL della colata dal cratere di SW acquisita alle 10:00 UTC del 17/07/2019 (MIROVA –UNITO).

STATISTICAL ANALYSIS AND REPORTS: The example of STROMBOLI and ETNA volcanoes

Data elaborated by M. Laiolo

What next?

1. Filling the gaps in the MODIS-MIROVA dataset for 100 volcanoes during the period 2000-2020:

- > About 60% volcanoes currently monitored by MIROVA does not have the full dataset processed
- Gradual publication of the database, once the collection is complete and supervised
- Sharing of the database with other systems

2. Transition MODIS to VIIRS

- ➢ VIIRS will provide VRP data in excellent continuity with MODIS.
- Currently we are in the validation stage of MIROVA algorithm to VIIRS (750 m)
- Implementation of NRT capabilities for VIIRS (750 m)
- > Exploiting the capabilities of VIIRS 375 m, for early detection of thermal unrest

3. Implementation of LANDSAT 8 (SWIR) – Validation Stage

4. Implementation of SENTINEL 3 (MIR) – In collaboration with MOUNTS platform

OVERVIEW OF MIROVA	TYPE OF INFORMATION	BEST PRACTICES	APPLICATION CASES
--------------------	---------------------	----------------	-------------------

Transition MODIS to VIIRS: Preliminary validation

